您所在的位置:甘肃中公考研 > 备考资料 > 考研数学 > 2021考研数学备考:求极限的方法汇总

2021考研数学备考:求极限的方法汇总

发布日期:2020-06-23 15:44:33  来源:甘肃中公考研

  【导语】时间来到夏季,对于21考研的小伙伴们来说,距离21考研已经只剩几个月了,那么在这儿夏季,我们应该怎么备考呢?想了解更多考研资讯请关注甘肃研究生招生信息网

  1、极 限分为一般极 限,还有个数列极限

  (区别在于数列极 限是发散的,是一般极 限的一种)。

  2、解决极限的方法如下

  1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极 限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小)

  2)洛必达法则(大题目有时候会有暗示要你使用这个方法)

  首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极 限时候先要转化成求x趋近情况下的极 限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极 限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。

  洛必达法则分为三种情况

  1)0比0无穷比无穷时候直接用

  2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了

  3)0的0次方,1的无穷次方,无穷的0次方

  对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)

  3、泰勒公式

  (含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助

  4、面对无穷大比上无穷大形式的解决办法

  取大头原则最大项除分子分母!看上去复杂处理很简单。

  5、无穷小与有界函数的处理办法

  面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!

  6、夹逼定理

  (主要对付的是数列极 限)这个主要是看见极 限中的函数是方程相除的形式,放缩和扩大。

  7、等比等差数列公式应用

  (对付数列极 限)(q绝对值符号要小于1)

  8、各项的拆分相加

  (来消掉中间的大多数)(对付的还是数列极 限)可以使用待定系数法来拆分化简函数。

  9、求左右求极 限的方式

  (对付数列极 限)例如知道Xn与Xn+1的关系,已知Xn的极 限存在的情况下,Xn的极 限与Xn+1的极 限是一样的,应为极 限去掉有限项目极 限值不变化。

  10、两个重要极 限的应用

  这两个很重要!对第一个而言是x趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极 限)

  11、还有个方法,非常方便的方法

  就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。x的x次方快于x!,快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)。当x趋近无穷的时候他们的比值的极 限一眼就能看出来了

  12、换元法

  是一种技巧,不会对某一道题目而言就只需要换元,但是换元会夹杂其中

  13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。

  14、还有对付数列极 限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。

  15、单调有界的性质

  对付递推数列时候使用证明单调性。

  16、直接使用求导数的定义来求极限



  热门推荐>>>2021年考研数学基础复习避开3个误区

  热门推荐>>>2021考研数学备考:极限的七种变化过程

  热门推荐>>>2021考研数学概率:知识点常考题型汇总

  热门推荐>>>2021年考研数学基础阶段复习完成3个任务

  访问甘肃研究生招生信息网!带你了解更多考研资讯,更多考研咨询请加QQ:945439650(岳老师)!

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。

【责任编辑:岳从计】

上一篇: 2021考研数学备考:函数与连续相关知识点

下一篇: 最后一页

考研免费题库

考研指导图书


中公考研课堂

  • 公共课
  • |专业课
课程系列 班次名称 价格 免费试听
考研政治网络课堂 2021考研“在职人”政治专属班 ¥1264.00  免费试听
2021考研政治全程进阶班 ¥784.00  免费试听
考研英语网络课堂 2021考研“在职人”英语一直播VIP班 ¥2304.00  免费试听
2021考研“在职人”英语二直播VIP班 ¥2304.00  免费试听
考研数学网络课堂 2021考研“在职人”数学专属班 ¥1264.00  免费试听
2021考研“在职人”数学直播VIP班 ¥2304.00  免费试听
2021考研李擂数学全程直播班 ¥2399.00  免费试听
全程联报课程 2021考研“在职人”政治+英语一联报专属VIP班 ¥2208.00  免费试听
2021考研“在职人”政治+数学联报专属VIP班 ¥2208.00  免费试听
2021考研英语(一)+数学联报进阶VIP班 ¥1248.00  免费试听
课程系列 班次名称 价格 免费试听
经济学考研网络课堂 2021考研经济学(初级)全程进阶班 ¥1264.00  免费试听
2021考研经济学(中级)全程进阶班 ¥1264.00  免费试听
管理学考研网络课堂 2021考研管理学全科进阶VIP班 ¥2352.00  免费试听
2021考研管理学全程进阶班 ¥1264.00  免费试听
中西医考研网络课堂 2021考研中医综合全程进阶班 ¥1584.00  免费试听
2021考研西医综合全程进阶班 ¥1584.00  免费试听
教育学考研网络课堂 2021考研教育学全程进阶班 ¥1584.00  免费试听
心理学考研网络课堂 2021考研心理学全程进阶班 ¥1584.00  免费试听
计算机考研网络课堂 2021考研计算机全程进阶班 ¥1264.00  免费试听
艺术学考研网络课堂 2021考研艺术概论全程进阶班 ¥1264.00  免费试听
 2021在职研习社

2021考研开始啦,在职研习社专为您解读考研政策,知己知彼。分科目复习备考,稳扎稳打,科学规划全年时间,把握节奏。GO>

 2021乐学周末面授班

各科目研发均由院长亲自主持研发,英语班后班、数学一加强课、数学二加强课、艺术生英语词汇补丁课、政英数的政治特色课、医学生特色乐学课GO>

  •  
历年考试试题

报考信息

备考指导

甘肃中公考研

 兰州市安宁区深安大桥北侧中集理想国际中公教育大厦

 网址:gs.kaoyan365.cn

 电话:0931-2152445  18215178454

咨询时间

周一至周日 9:00-18:00 全年无休在线客服

  • 安宁学习中心
  • 城关学习中心
  • 和平学习中心
  • 安宁教学点

    地址:兰州市安宁区深安大桥北侧中集理想国际中公教育大厦

    电话:0931-2152445

  • 城关教学点

    地址:兰州市城关区静宁路十字西北大厦副楼2层   电话:18609316509

    地址:龚家湾:七里河区民乐路北景芫小区159-16   电话: 18189515089

  • 和平教学点

    地址:兰州市榆中县和平镇薇乐大道天门大厦北联排2层(商学院南100米)

    电话:18189525089

甘肃中公考研互动平台 

微信公众号 甘肃中公考研

微博 甘肃中公考研